Forum category: DDSCAT / General discussion

Forum thread: Get Payday loans direct lender bad credit | FleetQuid ]]>

For two contacting spheres, it is easy to use the built-in target option SPHROID_2 (see the UserGuide for details). Or you could use SPHERES_N.

Forum category: DDSCAT / General discussion

Forum thread: contacting 2 spheres model ]]>

Hello, I am new and learning to use DDSCAT 7.3. I am at first trying to reproduce results from Dr. Flatau’s 2-spheres model that are in contact with each other (APPLIED OPTICS / Vol. 32, No. 18 / 20 June 1993 ). I have tried to reproduce the data, but with no luck. First of all, my S11 and S22 values are the same. Also, when I plot and compare the points to the literature values, the forward scattering looks like it reproduces S11, whereas the backscattering looks more like S22 character. Please let me know if you have suggestions for me.

Here is my input file, and header of my shape.dat file.

Thank you,

Yohanna White

*

shape.dat:

>TARELL ellipsoidal grain; AX,AY,AZ= 32.0000 32.0000 32.0000

34512 = NAT

1.000000 0.000000 0.000000 = A_1 vector

0.000000 1.000000 0.000000 = A_2 vector

1.000000 1.000000 1.000000 = lattice spacings (d_x,d_y,d_z)/d

-15.50000 0.50000 0.50000 = lattice offset x0(1-3) = (x_TF,y_TF,z_TF)/d for dipole 0 0 0

JA IX IY IZ ICOMP(x,y,z)

1 -2 -4 -16 1 1 1

2 -1 -4 -16 1 1 1

3 0 -4 -16 1 1 1

4 1 -4 -16 1 1 1

5 -3 -3 -16 1 1 1

ddscat.par:

' ========== Parameter file for v7.3 ==================='

' Preliminaries '

'NOTORQ' = CMTORQ*6 (DOTORQ, NOTORQ) — either do or skip torque calculations

'PBCGS2' = CMDSOL*6 (PBCGS2, PBCGST, GPBICG, QMRCCG, PETRKP) — CCG method

'FFTMKL' = CMETHD*6 (GPFAFT, FFTMKL) — FFT method

'GKDLDR' = CALPHA*6 (GKDLDR, LATTDR, FLTRCD) — DDA method

'NOTBIN' = CBINFLAG (ALLBIN, ORIBIN, NOTBIN)

' Initial Memory Allocation '

100 100 100 = dimensioning allowance for target generation

' Target Geometry and Composition '

'FROM_FILE' = CSHAPE*9 shape directive

no SHPAR parameters needed

2 = NCOMP = number of dielectric materials

'm1.33_0.001' = name of file containing RI info

'm1.33_0.001' = name of file containing RI info

' Additional Nearfield calculation? '

0 = NRFLD (=0 to skip nearfield calc., =1 to calculate nearfield E)

0.0 0.0 0.0 0.0 0.0 0.0 (fract. extens. of calc. vol. in -x,+x,-y,+y,-z,+z)

' Error tolerance '

1.00e-5 = TOL = MAX ALLOWED (NORM OF |G>=AC|E>-ACA|X>)/(NORM OF AC|E>)

' maximum number of iterations allowed '

300 = MXITER

' Interaction cutoff parameter for PBC calculations '

1.00e-5 = GAMMA (1e-2 is normal, 3e-3 for greater accuracy)

' Angular resolution for calculation of <cos>, etc. '

0.5 = ETASCA (number of angles is proportional to [(3+x)/ETASCA]^2 )

' Wavelengths (micron) '

6.283 6.2833 1 'LIN' = wavelengths (first, last, how many, how=LIN,INV,LOG,TAB)

' Refractive index of ambient medium'

1.000 = NAMBIENT

' Effective Radii (micron) '

10.000 10.000 1 'LIN' = eff. radii (first, last, how many, how=LIN,INV,LOG)

' Define Incident Polarizations '

(0,0) (1.,0.) (0.,0.) = Polarization state e01 (k along x axis)

2 = IORTH (=1 to do only pol. state e01; =2 to also do orth. pol. state)

' Specify which output files to write '

0 = IWRKSC (=0 to suppress, =1 to write ".sca" file for each target orient.

' Specify Target Rotations '

0. 0. 1 = BETAMI, BETAMX, NBETA (beta=rotation around a1)

0. 0. 1 = THETMI, THET MX, NTHETA (theta=angle between a1 and k)

0. 0. 1 = PHIMIN, PHIMAX, NPHI (phi=rotation angle of a1 around k)

' Specify first IWAV, IRAD, IORI (normally 0 0 0) '

0 0 0 = first IWAV, first IRAD, first IORI (0 0 0 to begin fresh)

' Select Elements of S_ij Matrix to Print '

2 = NSMELTS = number of elements of S_ij to print (not more than 9)

11 22 = indices ij of elements to print

' Specify Scattered Directions '

'LFRAME' = CMDFRM (LFRAME, TFRAME for Lab Frame or Target Frame)

2 = NPLANES = number of scattering planes

0. 0. 180. 5 = phi, thetan_min, thetan_max, dtheta (in degrees) for plane 1

90. 0. 180. 5 = phi, thetan_min, thetan_max, dtheta (in degrees) for plane 2

Forum category: DDSCAT / General discussion

Forum thread: contacting 2 spheres model ]]>

Is there a way for ddpostprocess.exe to take the nearfield calculations from wxxxryyykzzz.E1 and wxxxryyykzzz.E2 at the same time?

I'm looking to plot a contour map of the nearfield for an asymmetric geometry where the polarization direction is important, and I can only seem to plot it for one polarization direction at a time from either .E1 or .E2

Any suggestions?

Forum category: DDSCAT / General discussion

Forum thread: Regarding the Near-field Calculations ]]>

I figured out the problem after looking through a bit of the code for ddpostprocess.f90 and thought I'd share for any future people encountering a similar error - I had accidentally assigned multiple compositions to the same lattice positions, which caused the ICOMP(k,x,y,z) function to return 0 for a few lattice positions and the J1 iterator to miscount the number of dipoles in the target geometry.

Forum category: DDSCAT / General discussion

Forum thread: Regarding the Near-field Calculations ]]>

2. Because of a possible error involving sym links, the previous distribution of ddscat7.3.2 source code might have included an obsolete file. I just uploaded an up-to-date distribution, ddscat7.3.2_180829.tgz to this site.

If you continue to have trouble with ddpostprocess, I suggest going to Donwloads, download ddscat7.3.2_180829.tgz, and then recompile ddscat and ddpostprocess.

Forum category: DDSCAT / General discussion

Forum thread: Regarding the Near-field Calculations ]]>

I've downloaded the latest DDSCAT 7.3.2 version, compiled it using gfortran/MINGW for windows (windows 10), and run ddscat.exe

This works, however ddpostprocess.exe, which was compiled at the same time as ddscat.exe (so same architecture), always throws the error "readnf sanity failure: inconsistent j1 = 86343 and nat0 = 87601"

readnf is clearly having an issue reading the wxxxryyykzzz.E1 file, and seems to be finding an incorrect number of dipoles in some iterative loop its running to do calculations, as j1 is a variable counting the iterations of a set of loops in readnf.

How would you recommend remedying this problem?

Could my wxxxryyykzzz.E1 file contain NAN values, which get skipped by readnf?

Thanks!

Forum category: DDSCAT / General discussion

Forum thread: Regarding the Near-field Calculations ]]>

I have been trying to run DDSCAT for some custom shapes (FROM_FILE), with the shape.dat files generated from a MATLAB code or from the nanoHUB DDA Convert tool using Blender shapes. These are always created with the shape center at (0, 0, 0). The extinction spectra appear correct, and the E-field intensities generally make sense, but I run into issues somewhere between running ddpostprocess and using MayaVi or Paraview to visualize.

Despite the shape being centered, the E-field intensity map is always off-center and the shape outlines are thus cut off at the edges since they lay outside the computational volume (as ddpostprocess tells me when I try to select tracks from one edge of my shape to the other). I tried to visualize the target.out VTR files on the same set of axes in Paraview, and it looks like the entire shape is somehow thrown off-center since it matches up with the E-field plot. In MayaVi, however, I can only seem to visualize each separately, and while the E-field is still off-center, the target shape appears complete and centered in the outline box. This doesn't seem to change regardless of what I use to create the shape.dat file or what I use to visualize the ddpostprocess output.

While I know I can get a more complete image by changing the fractional extension of calculation volume in ddscat.par, my main concern is that the tracks I specify in ddpostprocess.par will not be directly through the center of the target as desired, since the entire shape is offset by some amount. Does anyone have any insight on how to resolve this issue? Would the output point towards some error in shape generation, in writing ddscat.par, or in writing ddpostprocess.par?

Thanks,

Rahil U.

Forum category: DDSCAT / General discussion

Forum thread: E-Field Visualization Centering ]]>

Probably you need to increase the initial memory allocation in ddscat.par

In ddscat.par, change the line following

' Initial Memory Allocation '

to larger numbers. The three numbers refer to the max target extent in the x,y,z directions.

For example,

' Initial Memory Allocation '

30 40 50 = dimensioning allowance for target generation

allows use of targets that do not extend more than 30 lattice spacings in x, 40 in y, 50 in z.

Increase the values as needed. Note that once the target has been generated, DDSCAT will reallocate only as much memory as is required for the actual problem, so it is OK to use numbers in ddscat.par that are significantly larger than needed, as long as they don't exceed the available memory available on your system.

Forum category: DDSCAT / General discussion

Forum thread: target problem (how to solve) ]]>

(1) Yes, what you wrote appears to be correct for specifying elliptically polarized e01. If you use IORTH=2, DDSCAT should generate an orthogonal e02 for the second incident state.

(2) Good question. The answer is "No". Think about a chiral target: Even if randomly-oriented, the cross section for absorption or scattering can be different for circularly-polarized than for linearly-polarized light. If you want to calculate the absorption or extinction cross sections, the calculation should use the actual polarization state of interest.

However, for scattering, if you calculate the Mueller scattering matrix S_ij for the desired scattering direction, then you *can* calculate the differential scattering cross section for elliptically-polarized light even if you used linearly-polarized e01 for the DDSCAT calculation. Therefore, you could in principle obtain the integrated scattering cross section Qsca and the anisotropy parameter <cos(theta)> by integrating over many scattering directions. However, this approach requires calculating S_ij for many scattering directions, which is tedious and may be numerically expensive.

If you are interested in total cross sections for polarized light, it is most efficient to calculate Q_abs, Q_sca, and Q_ext by specifying the incident polarization state of interest in ddscat.par

(3) Yes. The numbers written out in wxxxryyy.avg for JO=1 and JO=2 give <Qabs>, <Qsca>, <cos(theta)>, and <cos^2(theta)> for incident polarization states e01 and e02, averaged over the specified target orientations.

So far as I know DDSCAT is correct, but I must stress that testing of the treatment of elliptical polarization has been limited, therefore please remain alert for any results that seem suspicious. You may want to do some simple tests, such as calculating the orientationally-averaged Mueller matrix using linearly-polarized e01, and then repeating the calculation using elliptically-polarized e01. The resulting Mueller matrix S_ij should (ideally) be identical for both cases, but of course the numerically-calculated values of S_ij will differ slightly because of (1) round-off errors and (2) termination of iterative improvmenet when the error tolerance is satisfied.

Forum category: DDSCAT / General discussion

Forum thread: Incident polarization state ]]>

for example,

mpiexec -np 3 ./ddscat

should run ddscat with NUMPROC= 3 (you can check this in the output / log file)

Forum category: DDSCAT / General discussion

Forum thread: How to choose number of cores? ]]>

FATAL ERROR IN PROCEDURE: TARCYL

NAT.GT.MXNAT

Forum category: DDSCAT / General discussion

Forum thread: target problem (how to solve) ]]>

I am using DDSCAT 7.3 to calculate the orientationally-averaged values of *Q*_{abs}, *Q*_{sca} and <cos*θ*> of randomly-oriented soot aggregates interacting with monochromatic plane waves with specified polarization states. According to * User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3*, DDSCAT allows the user to specify a general elliptical polarization state for the incident radiation, by specifying the (complex) polarization vector ${\hat e_{01}}$ (see §24). Moreover, if

(1) Assume that the incident plane wave has a specified polarization state represented by the following Jones vector:

(1)\begin{align} J = \left[ {\begin{array}{*{20}{c}} {{E_{0y}}{e^{{\text{ - }}i{\delta _y}}}} \\ {{E_{0z}}{e^{{\text{ - }}i{\delta _z}}}} \end{array}} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {J = \frac{1}{{\sqrt {E_{0y}^2 + E_{0z}^2} }}\left[ {\begin{array}{*{20}{c}} {{E_{0y}}} \\ {{E_{0z}}{e^{{\text{ - }}i\delta }}} \end{array}} \right]} \\ {\delta = {\delta _z} - {\delta _y}} \\ {\cos \beta = \frac{{{E_{0y}}}}{{\sqrt {E_{0y}^2 + E_{0z}^2} }}} \\ {s{\text{in}}\beta = \frac{{{E_{0z}}}}{{\sqrt {E_{0y}^2 + E_{0z}^2} }}} \end{array}} \right\} \Rightarrow J = \left[ {\begin{array}{*{20}{c}} {\cos \beta } \\ {s{\text{in}}\beta \cos \delta - is{\text{in}}\beta s{\text{in}}\delta } \end{array}} \right] \end{align}

where *E*_{0y} and *E*_{0z} are the amplitude of the two components of the electric field vector, while *δ*_{y} and *δ*_{z} are the phase of the two components of the electric field vector, **should we simply set ${\hat e_{01}}$ by specifying (0, 0) (cos β, 0) (sinβcosδ, - sinβsinδ) in ddscat.par ?**

(2) Assume that we simply set ${\hat e_{01}} = {\hat y_{LF}}$ and ${\hat e_{02}} = {\hat z_{LF}}$, and calculate the orientationally-averaged values of *Q*_{abs}, *Q*_{sca} and <cos*θ*> in the two orthonormal polarization states, **can we calculate the orientationally-averaged values of Q_{abs}, Q_{sca} and <cosθ> in an arbitrary incident polarization state, just based on the orientationally-averaged values of Q_{abs}, Q_{sca} and <cosθ> in the two orthonormal polarization states ?**

Qext | Qabs | Qsca | g(1)=<cos> | <cos^2> | Qbk | Qpha | |

JO=1: | 9.2037E-01 | 8.1852E-01 | 1.0185E-01 | 7.2936E-02 | 4.0114E-01 | 1.0141E-02 | 5.3381E-01 |

JO=2: | 9.2037E-01 | 8.1852E-01 | 1.0185E-01 | 7.2936E-02 | 4.0114E-01 | 1.0141E-02 | 5.3380E-01 |

I am wondering **if the data in the lines of JO=1 and JO=2 in the red box are the calculation results of Q_{abs}, Q_{sca} and <cosθ> in the incident polarization states ${\hat e_{01}}$ and ${\hat e_{02}}$, respectively ?**

It is highly appreciated if you would instruct me on these questions, and I am looking forward to your reply.

Sincerely yours

Ya-fei Wang

Forum category: DDSCAT / General discussion

Forum thread: Incident polarization state ]]>

I need to model a nanoshell filled with a liquid having zero k value. I used CONELLIPSE module, but it did not converge.

I have tried to fix the problem in many other ways, I failed.

Please help.

Thanks,

Hirak

Forum category: DDSCAT / General discussion

Forum thread: Multilayered Ellipsoid ]]>

Jelly Gamat QnC menjadi satu-satunya obat herbal yang memiliki multi khasiat dalam menyembuhkan berbagai macam penyakit,karena Jelly Gamat Qnc ini hasil dari perpaduan bahan-bahan herbal alami terutama dari ekstrak teripang emas ( Golden Stichoupus Hermani ) yang merupakan hewan laut yang memiliki multi khasiat dalam menyembuhkan penyakit.

Selain itu, Jelly Gamat Qnc juga menjadi produk yang paling banyak di cari oleh masyarakat luas,karena Jelly Gamat Qnc ini sudah terbukti ampuh dalam mengatasi segala macam penyakit.Oleh karena itu, Jelly Gamat Qnc ini sangat cocok bagi anda yang ingin sembuh secara alami dari penyakit yang di derita.

Jelly Gamat Qnc ini sudah bayak di buktikan oleh konsumen kami yang sembuh dari penyakit yang di derita setelah mengkonsumsi rutin Jelly Gamat Qnc,sehingga sudah tidak di ragukan lagi bahwa Jelly Gamat Qnc sangat ampuh dalam mengobati segala jenis penyakit serta sangat aman di konsumsi dalam jangka panjang.

Kandungan yang terdapat pada Teripang emas memiliki potensi yang sangat besar dalam pengobatan, ini sudah banyak dibuktikan oleh beberapa penelitian terkait dengan kandungan yang dimilikinya, kadungan – kandungan tersebut meliputi:

Kolagen 80,0%

Kalsium

Mineral

Mukopolisakarida

Glucosaminoglycans (GAGs)

Antiseptik alamiah

Glucosamine dan Chondroitin

Saponin

Omega-3, 6, dan 9

Asam Amino

Lektin

Vitamin dan Mineral

Gamapeptide

Cell growth factor

Glikoprotein

Manfaat Qnc Jelly Gamat Untuk Kesehatan Dan Pengobatan

Membantu memperlancar sistem peredaran darah

Memperbaiki kerusakan pada ginjal dan menjaga fungsinya

Meningkatkan metabolisme tubuh

Mengobati sakit di persendian akibat asam urat maupun gangguan kesehatan lainnya

Mengobati kencing manis / Diabetes

Menurunkan kadar kolesterol dan mencegah penyumbatan kolesterol pada pembuluh darah

Mengatasi gangguan pernafasan

Mengatasi Kekurangan darah / Anemia

Menurunkan tekanan darah tinggi (Hipertensi)

Mencegah dan mengobati penyakit jantung koroner

Meningkatkan sistem kekebalan tubuh

Mengandung antioksi dan anti flu ganas

Mencegah dan mengobati berbagai jenis tumor dan kanker

Mengobati berbagai benjolan di tubuh

Meningkatkan regenerasi sel-sel tubuh dan memperbaiki kerusakan tubuh

Memperbaiki cedera tubuh, dan mempercepat pemulihan.

Dapat meningkatkan fungsi otak

Cara Pemesanan Jelly Gamat QnC

QNCL : Jumlah Pemesanan : Nama : Alamat : No HP/Telepon : Kirim KE 0853-5115-2300

CONTOH PEMESANAN

QNCL : 9 Botol : Azkia Salimati : Jln. Letnan Sule Setia Negara no 72 Rt/Rw 03/09 Kota Tasikmalaya : 0853.2325.xxx : Kirim KE : 0853-5115-2300

PERLU ANDA INGAT !

Kini Kode Fomat Resmi Setiap pemesanan via SMS/WA Jelly Gamat QnC TELAH DIGANTI menjadi QNCL oleh karenaitu setiap anda melakukan pemesanan Jelly Gamat QnC pada nomer 0853-5115-2300 adalah QNCL

Ingat jangan sampai salah jika format pemesanan anda salah pemesanan tidak akan kami proses

Rekening Pembayaran setiap pemesanan Obat Jelly Gamat QnC

Nama Bank No. Rekening

Bank BCA KCU Tasikmalaya No. Rekening : 054-065-9702

Bank Mandiri KCP Tasikmalaya No. Rekening : 131-00-1083303-8

Bank BNI Kota Tasikmalaya No. Rekening : 410-031-9933

Bank BRI Cab. Tasikmalaya No. Rekening : 4462-01-001059-50-9

Semua Rekening Atas Nama Septian Maulana / Puput Sundari

Keuntungan dan keunggulan berbelanja Obat Jelly Gamat QnC pada kami

*BAYAR BELAKANGAN : Keunggulan Utama Dari Toko Herbal Online Ini, Anda Bisa Mentransfer Pembayaran Setelah Barang Sampai Ke Tangan Anda (khusus daerah tertentu).

*GARANSI : Uang Kembali Tanpa Potongan Jika Produk Tidak Sampai atau Produk TERBUKTI PALSU.

*JAMINAN BARANG : Produk Herbal QnC Jelly Gamat Yang Kami Jual Disini 100% ASLI dan BERGARANSI.

*ORDER MUDAH : Pemesanan Cukup Melalui SMS Saja.

*RESPON CEPAT : Pesanan Akan Kami Kirim Langsung Hari Itu Juga Jika Anda Sudah Mengatakan “DEAL” Dengan Pesanan Anda.

Forum category: DDSCAT / General discussion

Forum thread: Jelly Gamat QnC ]]>

In principle, ddpostprocess.par can specify many tracks (one line per track).

If this doesn't address your requirements, then you may need to modify the program ddpostprocess.f90 to create a new version to write out what you want — see section 30.2 of the UserGuide for a few words about this. The critical piece of code is subroutine readnf.f90 (called by ddpostprocess.f90) which reads the stored data file (e.g., 'w000r000k000.E1') from disk, and returns information about the polarization, electric field, etc at each lattice site. You will probably need prior experience with f90 programming if you are going to undertake this route.

It would be nice if some DDSCAT user would write some MATLAB code to do this, and make it available, but so far as I am aware this hasn't happened.

Forum category: DDSCAT / General discussion

Forum thread: Regarding the Near-field Calculations ]]>

In ddpostprocess.par, the line

-0.59684 0.0 0.0 0.59684 0.0 0.0 501 = XA,YA,ZA, XB,YB,ZB (phys units), NAB

gives the electric field along one track.

I want to write electric field along a matrix (i.e. multiple tracks).

Please suggest the modification.

Forum category: DDSCAT / General discussion

Forum thread: Regarding the Near-field Calculations ]]>

You can run ddscat in another directory (i.e., "folder") by giving the *full* path name to ddscat.

On Unix/Linux systems, the current directory may not be in your default "Paths" to be searched for executables. If (as you wrote) you have copied ddscat to the directory you are positioned in, you would then need to type "./ddscat" to execute it.

Forum category: DDSCAT / General discussion

Forum thread: Error: bash - ddscat: command not found ]]>

Jelly Gamat QnC menjadi satu-satunya obat herbal yang memiliki multi khasiat dalam menyembuhkan berbagai macam penyakit,karena Jelly Gamat Qnc ini hasil dari perpaduan bahan-bahan herbal alami terutama dari ekstrak teripang emas ( Golden Stichoupus Hermani ) yang merupakan hewan laut yang memiliki multi khasiat dalam menyembuhkan penyakit.

Selain itu, Jelly Gamat Qnc juga menjadi produk yang paling banyak di cari oleh masyarakat luas,karena Jelly Gamat Qnc ini sudah terbukti ampuh dalam mengatasi segala macam penyakit.Oleh karena itu, Jelly Gamat Qnc ini sangat cocok bagi anda yang ingin sembuh secara alami dari penyakit yang di derita.

Jelly Gamat Qnc ini sudah bayak di buktikan oleh konsumen kami yang sembuh dari penyakit yang di derita setelah mengkonsumsi rutin Jelly Gamat Qnc,sehingga sudah tidak di ragukan lagi bahwa Jelly Gamat Qnc sangat ampuh dalam mengobati segala jenis penyakit serta sangat aman di konsumsi dalam jangka panjang.

Kandungan yang terdapat pada Teripang emas memiliki potensi yang sangat besar dalam pengobatan, ini sudah banyak dibuktikan oleh beberapa penelitian terkait dengan kandungan yang dimilikinya, kadungan – kandungan tersebut meliputi:

Kolagen 80,0%

Kalsium

Mineral

Mukopolisakarida

Glucosaminoglycans (GAGs)

Antiseptik alamiah

Glucosamine dan Chondroitin

Saponin

Omega-3, 6, dan 9

Asam Amino

Lektin

Vitamin dan Mineral

Gamapeptide

Cell growth factor

Glikoprotein

Manfaat Qnc Jelly Gamat Untuk Kesehatan Dan Pengobatan

Membantu memperlancar sistem peredaran darah

Memperbaiki kerusakan pada ginjal dan menjaga fungsinya

Meningkatkan metabolisme tubuh

Mengobati sakit di persendian akibat asam urat maupun gangguan kesehatan lainnya

Mengobati kencing manis / Diabetes

Menurunkan kadar kolesterol dan mencegah penyumbatan kolesterol pada pembuluh darah

Mengatasi gangguan pernafasan

Mengatasi Kekurangan darah / Anemia

Menurunkan tekanan darah tinggi (Hipertensi)

Mencegah dan mengobati penyakit jantung koroner

Meningkatkan sistem kekebalan tubuh

Mengandung antioksi dan anti flu ganas

Mencegah dan mengobati berbagai jenis tumor dan kanker

Mengobati berbagai benjolan di tubuh

Meningkatkan regenerasi sel-sel tubuh dan memperbaiki kerusakan tubuh

Memperbaiki cedera tubuh, dan mempercepat pemulihan.

Dapat meningkatkan fungsi otak

Cara Pemesanan Jelly Gamat QnC

QNCL : Jumlah Pemesanan : Nama : Alamat : No HP/Telepon : Kirim KE 0853-5115-2300

CONTOH PEMESANAN

QNCL : 9 Botol : Azkia Salimati : Jln. Letnan Sule Setia Negara no 72 Rt/Rw 03/09 Kota Tasikmalaya : 0853.2325.xxx : Kirim KE : 0853-5115-2300

PERLU ANDA INGAT !

Kini Kode Fomat Resmi Setiap pemesanan via SMS/WA Jelly Gamat QnC TELAH DIGANTI menjadi QNCL oleh karenaitu setiap anda melakukan pemesanan Jelly Gamat QnC pada nomer 0853-5115-2300 adalah QNCL

Ingat jangan sampai salah jika format pemesanan anda salah pemesanan tidak akan kami proses

Rekening Pembayaran setiap pemesanan Obat Jelly Gamat QnC

Nama Bank No. Rekening

Bank BCA KCU Tasikmalaya No. Rekening : 054-065-9702

Bank Mandiri KCP Tasikmalaya No. Rekening : 131-00-1083303-8

Bank BNI Kota Tasikmalaya No. Rekening : 410-031-9933

Bank BRI Cab. Tasikmalaya No. Rekening : 4462-01-001059-50-9

Semua Rekening Atas Nama Septian Maulana / Puput Sundari

Keuntungan dan keunggulan berbelanja Obat Jelly Gamat QnC pada kami

*BAYAR BELAKANGAN : Keunggulan Utama Dari Toko Herbal Online Ini, Anda Bisa Mentransfer Pembayaran Setelah Barang Sampai Ke Tangan Anda (khusus daerah tertentu).

*GARANSI : Uang Kembali Tanpa Potongan Jika Produk Tidak Sampai atau Produk TERBUKTI PALSU.

*JAMINAN BARANG : Produk Herbal QnC Jelly Gamat Yang Kami Jual Disini 100% ASLI dan BERGARANSI.

*ORDER MUDAH : Pemesanan Cukup Melalui SMS Saja.

*RESPON CEPAT : Pesanan Akan Kami Kirim Langsung Hari Itu Juga Jika Anda Sudah Mengatakan “DEAL” Dengan Pesanan Anda.

Forum category: DDSCAT / Announcements

Forum thread: Obat Herbal Anyang Anyangan - Jelly Gamat QnC ]]>

gfortran -c -O2 writefml.f90 -o writefml.o

gfortran -c -O2 writepol.f90 -o writepol.o

gfortran -c -O2 writesca.f90 -o writesca.o

gfortran -c -O2 zbcg2wp.f90 -o zbcg2wp.o

LOADEDMODULES=

LOADEDMODULES_modshare=

LD_LIBRARY_PATH=

LD_LIBRARY_PATH_modshare=

MKLROOT=

CPATH=

FPATH=

DYLD_LIBRARY_PATH=

INCLUDE=

LIBRARY_PATH=

gfortran -o ddscat DDSCAT.o alphadiag.o blas.o bself.o ccgpack.o cgcommon.o cglib2.o cglib3.o cgsarkar2.o cgsarkar3.o cisi.o copyit.o cprod.o cxfft3n.o cxfft3_mkl_fake.o cxfftw_fake.o ddcommon.o dielec.o direct_calc.o direct_calcb.o divide.o dsyevj3.o dummy.o errmsg.o eself.o evala.o evale.o evalq.o extend.o gasdev.o getfml.o getmueller.o gpbicg.o gpfa.o interp.o mpi_fake.o namer.o namer2.o namid.o nearfield.o nuller.o orient.o p_lm.o pad.o pbcscavec.o pim.o prinaxis.o qmrpim2.o ran3.o reapar.o reashp.o reduce.o restore.o rot2.o rotate.o scat.o scavec.o tangcg.o tar2el.o tar2sp.o tar3el.o taranirec.o tarblocks.o tarcel.o tarcyl.o tarcylcap.o tarell.o target.o targspher.o tarhex.o tarlyrslab.o tarnas.o tarnsp.o taroct.o taronion.o tarpbxn.o tarprsm.o tarrctblk3.o tarrctell.o tarrec.o tarrecrec.o tarslbhol.o tartet.o timeit.o unreduce.o version.o wrimsg.o writebin.o writefml.o writepol.o writesca.o zbcg2wp.o

[gin@starbucks src]$

Forum category: DDSCAT / General discussion

Forum thread: Error: bash - ddscat: command not found ]]>

Forum category: DDSCAT / General discussion

Forum thread: Nearfield calculations with multiple planewaves ]]>

If the two plane wave sources are coherent (with one another) then the problem is more complicated. Subroutine EVALE (evale.f90) can be modified to provide whatever incident wave is desired, but a number of other modifications would be required to pass parameters to EVALE, and the total extinction cross section can no longer be evaluated using the optical theorem as DDSCAT does now.

Forum category: DDSCAT / General discussion

Forum thread: Nearfield calculations with multiple planewaves ]]>

Thanks in advance!

Forum category: DDSCAT / General discussion

Forum thread: Nearfield calculations with multiple planewaves ]]>

In Gaussian ("cgs") electromagnetism, polarizability has dimensions of volume. DDSCAT reports alpha/d^3, where d is the lattice spacing; i.e., alpha is given in units of d^3.

Dipole polarizations P_j = alpha_j*E_j are given in units of d^3 multiplied by whatever units you consider the electric field to be measured in when you specify the value of the incident E field in ddscat.par

Forum category: DDSCAT / General discussion

Forum thread: Polarization vectors ]]>

Forum category: DDSCAT / General discussion

Forum thread: Polarization vectors ]]>

I am planning to do so many calculations using ddscat7.3.2, but it seems I am having a problem from the beginning.

I am using UBUNTU and I have followed the steps stated in the user guide from downloading the source code (section 5) to running the program (subsection 10.1) but I suspect that I am missing something. While being in RCTGLPRSM, I have changed the vacume wavelength to " 0.700 0.700 1 'LIN' " and I have created the symbolic link as per the instruction in section 10.1. However, when I perform the calculation using "ddscat >& ddscat.out &" , my terminal goes away (disappears) and I don't see any changes on the values of Q_scat, Q_ext… in the qtable.sav file. In the ddscat.par file

My ddscat.out file says "NO command 'ddscat' found, did you mean:

command 'ddscat' from package 'ptscotch' (universal)

ddscat: command not found "

Thank you,

Tadele

Forum category: DDSCAT / General discussion

Forum thread: Error in code when running for CONELLIPS target. ]]>

I have modelled a group of nanospheres grouped together almost in a straight line. Can I model the scattering properties such that results obtained from the first nanosphere would become an input for the second nanosphere and so on for the whole network?

Thanks,

Hirak

Forum category: DDSCAT / General discussion

Forum thread: Aggregates ]]>

I'm running the code in Linux Mint platform. The computer has 16GB RAM, 8 cores & I also installed 'OpenMPI.' Please kindly help me.

Thanks

Forum category: DDSCAT / General discussion

Forum thread: How to choose number of cores? ]]>

Sir, am i right ?

Thanking You.

Forum category: DDSCAT / General discussion

Forum thread: Error in code when running for CONELLIPS target. ]]>

The effective radius aeff (in physical units) is specified on a separate line of ddscat.par . The physical size of

d is then fixed by N*d^3=(4*pi/3)aeff^3 , where N is the total number of non-vacuum dipoles.

Please consult the UserGuide for further details.

Forum category: DDSCAT / General discussion

Forum thread: Error in code when running for CONELLIPS target. ]]>

I have one more problem regarding the core-shell calculations, when we define the outer and inner size e.g. 21 21 21 20 20 20, it means that, there is 1 nm shell thickness with core size 20 nm. while we defining such parameter, these parameters also defining the dipole, So for this condition, the number of dipoles must be 10 ^ 4. But in our above considered case, the dipoles are very less ( 4 x 10 ^ 3) . therefore, i want to know that how we can define the relevance dipoles and effective size (radius) ?

I am waiting yours fruitful discussion.

I wish you ll reply as soon as possible.

Thanking You

Forum category: DDSCAT / General discussion

Forum thread: Error in code when running for CONELLIPS target. ]]>

2. if ddscat terminated without writing Q values into qtable, then it didn't terminate normally.

I suggest you examine whatever was written to "standard output" to determine the reason for the code terminated.

Forum category: DDSCAT / General discussion

Forum thread: Error in code when running for CONELLIPS target. ]]>

I have one more problem regarding the core-shell calculations, when we define the outer and inner size e.g. 21 21 21 20 20 20, it means that, there is 1 nm shell thickness with core size 20 nm. while we defining such parameter, these parameters also defining the dipole, So for this condition, the number of dipoles must be 10 ^ 4. But in our above considered case, the dipoles are very less ( 4 x 10 ^ 3) . therefore, i want to know that how we can define the relevance dipoles ?

I am waiting yours fruitful discussion.

I wish you ll reply as soon as possible.

Thanking You

Forum category: DDSCAT / General discussion

Forum thread: Error in code when running for CONELLIPS target. ]]>

I ran the calculation for Q_scat values for conellips using 70 70 70 30 30 30 shape parameters. The calculation executed with normal termination but no Q_scat or Q_ext values were shown in qtable file.

Moreoever, I am not much clear about the shape parameters. I mean, in my calculations, how to decide the thickness of core and mantle in conellips?

Thanks in advance,

Forum category: DDSCAT / General discussion

Forum thread: Error in code when running for CONELLIPS target. ]]>

The index shows 2 entries for "effective radius" — pages 9 and 24.

a_{eff}= effective radius is defined by equation 4 on page 9.

Forum category: DDSCAT / General discussion

Forum thread: effective radii ]]>

Forum category: DDSCAT / General discussion

Forum thread: effective radii ]]>

E_sca and E_inc at each point j in the computational volume, where the total E=E_sca+E_inc,

for incident polarizations 1 and 2.

The files wxxxryyykzzz.En are intended to be read by the program DDPOSTPROCESS.f90.

If you compile and run this on the same architecture that was used to run DDSCAT, DDPOSTPROCESS should be able to read the binary files wxxxryyykzzz.En created by DDSCAT.

Please see section 30 of the UserGuide for instructions on using DDPOSTPROCESS.

The user needs to create a file ddpostprocess.par to tell DDPOSTPROCESS what output is desired.

An example of ddpostprocess.par (as well as output files) can be found in examples_exp/ELLIPSOID_NEARFIELD

Forum category: DDSCAT / General discussion

Forum thread: Regarding the Near-field Calculations ]]>

I am doing the near-field calculations, as given in user guide of DDSCAT 7.3 on 29, 29.1 & 29.2 sections. when, we calculate the near-field calculation after choosing important parameter i.e. 1 = NRFLD (=0 to skip nearfield calc., =1 for nearfield E, =2 for E and B) and 2 = IORTH (=1 to do only pol. state e01; =2 to also do orth. pol. state), and 1 = IWRKSC (=0 to suppress, =1 to write ".sca" file for each target orient.; After doing these changing in ddscat.par file and run in the ddscat. we got the extra file like w000r000k000.E1 & w000r000k000.E2 and so on….w000r000k000.E200. Till now, i followed these steps.

Now, my Question is how to use .E2, .E2, .E3 and so on .E200 files for further calculation ?

Q1. Is it single point calculation.

Q2. If it is not single point calculation, then how to add these file into E1+E2…….=En

Q3. is it run directly through ddpostprocess or we have to make ddpostprocess.par file. if yes, then How to make and which parameter are use in ddpostprocess.par file. and how to run after preparing the ddpostprocess.par file.

I wish you will reply soon.

Thanking You

Forum category: DDSCAT / General discussion

Forum thread: Regarding the Near-field Calculations ]]>

One probably doesn't gain much from using more than 4 OpenMP threads. In my own calculations I typically set OMP_NUM_THREADS=4 .

In general, users are strongly encouraged to use the current release: DDSCAT 7.3.2

Forum category: DDSCAT / General discussion

Forum thread: openmp seems do not work for ddscat ]]>

The testing problem is the scattering problem of a sphere: the geometry parameters of the target is

'ELLIPSOID'

80 80 80

Then I set OMP_NUM_THREADS=12 and run the executable ddscat.

Here is the problem: it seems the program is not running in openmp mode. The command "top d1" shows only about 200%, instead of 1200%, of CPU is used. No matter what value is given to OMP_NUM_THREADS, the usage of CPU is always about 200%.

Did I miss anything in compiling, or running the program ?

Thank you very much!

Forum category: DDSCAT / General discussion

Forum thread: openmp seems do not work for ddscat ]]>

Forum category: DDSCAT / Report errors

Forum thread: Help with orientation issues ]]>

The physical value of a_eff is specified in ddscat.par.

The shape of the ellipsoid, and the number of dipoles that will be used, is determined when you set parameters SHPAR_1, SHPAR_2, SHPAR_3 (=A,B,C)

Forum category: DDSCAT / Report errors

Forum thread: Help with orientation issues ]]>

Thank you for your elaborated answer. Now I can see it and can be able to play with it.

Wishing Merry Christmas and Happy New Year, 2018 to you and family.

Thanks and regards,

Hirak

Forum category: DDSCAT / General discussion

Forum thread: Longitudinal Polarization ]]>

Forum category: DDSCAT / Report errors

Forum thread: Help with orientation issues ]]>

I am using DDSCAT 7.3 code in LINUX and facing problem for calculating absorption cross section for core- shell nanorods. Please help me how i calculate effective radii , and also tell how shape parameter and effective radii are correlated with each other.

Forum category: DDSCAT / General discussion

Forum thread: Error in code when running for CONELLIPS target. ]]>

Thanks for the answers & clear explanation.

Forum category: DDSCAT / General discussion

Forum thread: How to fix lattice spacing 'd' value? ]]>

http://adsabs.harvard.edu/abs/2016ApJ...831..109D

The correction will depend on dielectric function and size/lambda, so you may find that resonances will shift in wavelength when this is done.

The extrapolation procedure described in Eq. 15-17 of above reference will give you a fractional correction phi_N, where N is the largest N that you could afford to do. I would guess that the extrapolation itself is uncertain by

some fraction (perhaps 0.1) of phi_N (again, see Fig. 6 of above reference).

Remember also that the DDA realization with finite N is only approximating the geometry of the ideal cylinder with end caps. Again, repeating with larger N will in effect be doing a slightly different geometry. The correction phi_N will include these "geometric" effects.

Forum category: DDSCAT / General discussion

Forum thread: Gold Nanorod Extinction Spectra Simulation ]]>

Thank you for your reply. I am happy to know that the basic calculation setup was ok and I am understanding the parameterization of the program correctly. Thank you for your assistance with the calculation optimization settings. You saved me a lot of effort in trying to figure out what the appropriate rotational setups are.

Now I am trying to reconcile the difference between my experimental and simulated spectra. The simulated LSPR peak is shifted to the red by ~50 nm. If the medium dielectric constant was increased (as it could likely be due to the surfactant), I would expect the LSPR peak to shift further to the red. Not sure about what else might be likely causing the discrepancy. Is polydispersity the probable culprit?

Thanks and best regards,

Joe

Forum category: DDSCAT / General discussion

Forum thread: Gold Nanorod Extinction Spectra Simulation ]]>

to the cylinder only (not including endcaps) so the value 3.55 does

correspond to your desired 25/7 to within the allowed discretization.

(I will correct this typo in the qtable output for CYLNDRCAP in the

next release.)

2. For this axially-symmetric target you do not need to rotate the

target around the axis a1, so you can reduce the compute time

by a factor 20 by changing

0. 360.0 20 = BETAMI, BETAMX, NBETA (beta=rotation around a1)

to

0. 0. 1 = BETAMI, BETAMX, NBETA (beta=rotation around a1)

3. With the reflection symmetry of this target, there is no

reason to sample THETA outside the range 0 to 90.

You can reduce your computing time by changing

0. 180.0 10 = THETMI, THETMX, NTHETA (theta=angle between a1 and k)

to

0. 90. 6 = THETMI, THETMX, NTHETA (theta=angle between a1 and k)

see section 19.3 for sampling in THETA: with an even value of

NTHETA, this will sample THETA uniformly in cos(THETA) at

cos(THETA)=11/12, 9/12, 7/12, 5/12, 3/12, 1/12

4. There is also really no need to do more than one angle PHI.

The PHI rotations are not very costly in cputime, but in this

case don't seem to be necessary at all if you are using unpolarized

light and are going to average over both polarization states.

Forum category: DDSCAT / General discussion

Forum thread: Gold Nanorod Extinction Spectra Simulation ]]>

With the ddscat.par file that you provided, the cylinder axis will be along the x axis in the Target Frame (TF). If you want the incident electric field to be along this direction, then you have to rotate the target in the Lab Frame (LF) by 90deg. Simply set Theta to 90 by changing the appropriate lines in ddscat.par to read

' Prescribe Target Rotations '

0.00 0.00 1 = BETAMI, BETAMX, NBETA (beta=rotation around a1)

90.00 90.00 1 = THETMI, THETMX, NTHETA (theta=angle between a1 and k)

0.00 0.00 1 = PHIMIN, PHIMAX, NPHI (phi=rotation angle of a1 around k)

With this setting, incident polarization state JP=1 will correspond to incident E along the cylinder axis.

Forum category: DDSCAT / General discussion

Forum thread: Longitudinal Polarization ]]>

Thank you for your assistance. Indeed, the MXITER adjustment worked to get the code to run. I am now able to generate extinction spectra.

Follow up question; As I understand it from the manual, the shape parameters should be set, such that they reflect the aspect ratio of the nanorods I am trying to measure (pg 44 of the ddscat manual "SHPAR1 = cylinder length/d (not including end-caps!) and SHPAR2 = cylinder diameter/d "). For example, I am now trying to model a rod L=32 nm X d=7 nm (where L=total length), aspect ratio=4.57. I set up the .par file to reflect this geometry by setting the shape parameters to be a ratio of 25/7. I double the shape parameters to get a higher number of dipoles (Please correct me if I am not understanding this operation correctly). The aeff=6.48nm is calculated from the total L and d. However, the resulting qtable output has written in the header asp.ratio= 3.5477. Can you please confirm that this is the correct way to try and model this sample with ddscat? My other specific questions are if the incident polarizations and target rotations parameters are setup correctly? My goal is to simulate the extinction spectra of these nanorods in solution, then compare the results with spectrophotometer measurements.

The complete .par file is included below. Note, that this took about a week running MPI on a 12core machine. So I would probably make some changes to try and speed things up.

Thanks in advance for your assistance,

Joe

' ========== Parameter file for v7.3 ==================='

' Preliminaries '

'NOTORQ' = CMDTRQ*6 (DOTORQ, NOTORQ) — either do or skip torque calculations

'PBCGS2' = CMDSOL*6 (PBCGS2, PBCGST, GPBICG, QMRCCG, PETRKP) — CCG method

'GPFAFT' = CMETHD*6 (GPFAFT, FFTMKL) — FFT method

'GKDLDR' = CALPHA*6 (GKDLDR, LATTDR, FLTRCD) — DDA method

'NOTBIN' = CBINFLAG (NOTBIN, ORIBIN, ALLBIN) — binary output?

' Initial Memory Allocation '

100 100 100 = dimensioning allowance for target generation

' Target Geometry and Composition '

'CYLNDRCAP' = CSHAPE*9 shape directive

50.0 14.0 = shape parameters 1 - 2

1 = NCOMP = number of dielectric materials

'../diel/Au_evap' = file with refractive index 1

' Additional Nearfield calculation? '

0 = NRFLD (=0 to skip nearfield calc., =1 to calculate nearfield E)

0.0 0.0 0.0 0.0 0.0 0.0 (fract. extens. of calc. vol. in -x,+x,-y,+y,-z,+z)

' Error Tolerance '

1.00e-5 = TOL = MAX ALLOWED (NORM OF |G>=AC|E>-ACA|X>)/(NORM OF AC|E>)

' Maximum number of iterations '

1000 = MXITER

' Integration limiter for PBC calculations '

1.00e-2 = GAMMA (1e-2 is normal, 3e-3 for greater accuracy)

' Angular resolution for calculation of <cos>, etc. '

0.5 = ETASCA (number of angles is proportional to [(3+x)/ETASCA]^2 )

' Wavelengths (micron) '

0.48 1.0 130 'LIN' = wavelengths (1st,last,howmany,how=LIN,INV,LOG,TAB)

' Refractive index of ambient medium '

1.333 = NAMBIENT

' Effective Radii (micron) '

0.00648 0.00648 1 'LIN' = eff. radii (1st,last,howmany,how=LIN,INV,LOG,TAB)

' Define Incident Polarizations '

(0,0) (1.,0.) (0.,0.) = Polarization state e01 (k along x axis)

2 = IORTH (=1 to do only pol. state e01; =2 to also do orth. pol. state)

' Specify which output files to write '

0 = IWRKSC (=0 to suppress, =1 to write ".sca" file for each target orient.

' Specify Target Rotations '

0. 360.0 20 = BETAMI, BETAMX, NBETA (beta=rotation around a1)

0. 180.0 10 = THETMI, THETMX, NTHETA (theta=angle between a1 and k)

0. 360.0 20 = PHIMIN, PHIMAX, NPHI (phi=rotation angle of a1 around k)

' Specify first IWAV, IRAD, IORI (normally 0 0 0) '

0 0 0 = first IWAV, first IRAD, first IORI (0 0 0 to begin fresh)

' Select Elements of S_ij Matrix to Print '

9 = NSMELTS = number of elements of S_ij to print (not more than 9)

11 12 21 22 31 33 44 34 43 = indices ij of elements to print

' Specify Scattered Directions '

'LFRAME' = CMDFRM (LFRAME, TFRAME for Lab Frame or Target Frame)

1 = NPLANES = number of scattering planes

0. 0. 180. 1 = phi, theta_min, theta_max (deg) for plane A

Forum category: DDSCAT / General discussion

Forum thread: Gold Nanorod Extinction Spectra Simulation ]]>

I have found out that longitudinal polarization along a gold nanorod axis ( set at x-axis) in LF can be achieved by setting the theta value ~ 18

I got puzzled . Why 18

Sorry to ask you such a silly question but I have tried and spent couple of nights realizing the 3D space.

Please illuminate me.

Yours sincerely,

Hirak

DDSCAT - DDSCAT 7.3.0 [13.05.03]

TARGET - Cyl.prism, NAT= 6385 NFAC= 225 NLAY= 17 asp.ratio= 1.0044

GKDLDR - DDA method

PBCGS2 - CCG method

CYLNDRCAP - shape

6385 = NAT0 = number of dipoles

0.08689122 = d/aeff for this target [d=dipole spacing]

0.002377 = d (physical units)

- physical extent of target volume in Target Frame -—-

-0.039214 0.039214 = xmin,xmax (physical units)

-0.020201 0.020201 = ymin,ymax (physical units)

-0.020201 0.020201 = zmin,zmax (physical units)

AEFF= 0.020156 = effective radius (physical units)

WAVE= 0.624000 = wavelength (in vacuo, physical units)

K*AEFF= 0.275406 = 2*pi*aeff/lambda

NAMBIENT= 1.357000 = refractive index of ambient medium

n= ( 0.1435 , 2.4668), eps.= ( -6.0645 , 0.7078) |m|kd= 0.0591 for subs. 1

TOL= 1.000E-05 = error tolerance for CCG method

( 1.00000 0.00000 0.00000 ) = target axis A1 in Target Frame

( 0.00000 1.00000 0.00000 ) = target axis A2 in Target Frame

NAVG= 248 = (theta,phi) values used in comp. of Qsca,g

( 0.02273 -0.00747 0.00000 ) = k vector (latt. units) in TF

( 0.30362, 0.00000 )( 0.92375, 0.00000 )(-0.23345, 0.00000 )=inc.pol.vec. 1 in TF

( 0.07289, 0.00000 )( 0.22177, 0.00000 )( 0.97237, 0.00000 )=inc.pol.vec. 2 in TF

( 0.95000 0.30362 0.07289 ) = target axis A1 in Lab Frame

(-0.31225 0.92375 0.22177 ) = target axis A2 in Lab Frame

( 0.02393 0.00000 0.00000 ) = k vector (latt. units) in Lab Frame

( 0.00000, 0.00000 )( 1.00000, 0.00000 )( 0.00000, 0.00000 )=inc.pol.vec. 1 in LF

( 0.00000, 0.00000 )(-0.00000, 0.00000 )( 1.00000,-0.00000 )=inc.pol.vec. 2 in LF

BETA = 0.000 = rotation of target around A1

THETA= 18.195 = angle between A1 and k

PHI = 13.500 = rotation of A1 around k

0.5000 = ETASCA = param. controlling # of scatt. dirs used to calculate <cos> etc.

Qext Qabs Qsca g(1)=<cos> <cos^2> Qbk Qpha

JO=1: 1.6468E+00 1.3128E+00 3.3396E-01 1.7513E-03 2.3078E-01 5.9597E-03 5.7771E-01

JO=2: 2.7998E-01 2.3300E-01 4.6979E-02 1.1112E-02 3.3016E-01 3.4188E-03 7.5858E-01

mean: 9.6337E-01 7.7289E-01 1.9047E-01 2.9057E-03 2.4304E-01 4.6893E-03 6.6814E-01

Qpol= 1.3668E+00 dQpha= -1.8087E-01

Qsca*g(1) Qsca*g(2) Qsca*g(3) iter mxiter Nsca

JO=1: 5.8488E-04 -2.3407E-04 4.2185E-05 99 10000 248

JO=2: 5.2201E-04 2.1309E-04 -4.7081E-05 106 10000 248

mean: 5.5344E-04 -1.0490E-05 -2.4484E-06

Mueller matrix elements for selected scattering directions in Target Frame

theta phi Pol. S_11 S_12 S_21 S_22 S_31 S_41 S_34 S_43

0.00 0.00 0.05336 8.2200E-04 -3.9079E-05 -4.386E-05 7.324E-04 2.765E-10 -5.275E-11 2.206E-07 -1.965E-07

10.00 0.00 0.10003 9.6275E-04 8.5808E-05 9.631E-05 8.578E-04 -7.130E-10 -4.075E-10 -4.875E-04 4.343E-04

20.00 0.00 0.35199 1.3385E-03 4.1977E-04 4.711E-04 1.193E-03 5.239E-10 -1.164E-10 -9.614E-04 8.567E-04

30.00 0.00 0.54439 1.9058E-03 9.2442E-04 1.037E-03 1.698E-03 -6.694E-10 4.075E-10 -1.408E-03 1.254E-03

40.00 0.00 0.66563 2.5985E-03 1.5411E-03 1.730E-03 2.315E-03 4.511E-10 1.426E-09 -1.813E-03 1.615E-03

50.00 0.00 0.73951 3.3343E-03 2.1970E-03 2.466E-03 2.971E-03 -4.366E-10 -1.222E-09 -2.163E-03 1.927E-03

60.00 0.00 0.78458 4.0244E-03 2.8133E-03 3.157E-03 3.586E-03 -6.476E-10 0.000E+00 -2.447E-03 2.180E-03

70.00 0.00 0.81160 4.5838E-03 3.3147E-03 3.720E-03 4.084E-03 -1.615E-09 2.910E-10 -2.653E-03 2.363E-03

80.00 0.00 0.82635 4.9422E-03 3.6388E-03 4.084E-03 4.404E-03 -5.311E-10 -2.095E-09 -2.773E-03 2.471E-03

90.00 0.00 0.83165 5.0536E-03 3.7448E-03 4.203E-03 4.503E-03 -6.476E-10 2.212E-09 -2.805E-03 2.499E-03

100.00 0.00 0.82837 4.9027E-03 3.6186E-03 4.061E-03 4.368E-03 -1.062E-09 -8.731E-10 -2.746E-03 2.447E-03

110.00 0.00 0.81571 4.5073E-03 3.2759E-03 3.677E-03 4.016E-03 -8.549E-10 -6.403E-10 -2.602E-03 2.318E-03

120.00 0.00 0.79086 3.9158E-03 2.7594E-03 3.097E-03 3.489E-03 -8.440E-10 -1.164E-09 -2.378E-03 2.119E-03

130.00 0.00 0.74787 3.2013E-03 2.1332E-03 2.394E-03 2.852E-03 -4.075E-10 4.948E-10 -2.086E-03 1.858E-03

140.00 0.00 0.67522 2.4509E-03 1.4745E-03 1.655E-03 2.184E-03 -8.949E-10 1.310E-09 -1.735E-03 1.546E-03

150.00 0.00 0.55206 1.7554E-03 8.6345E-04 9.691E-04 1.564E-03 -8.731E-11 -1.892E-09 -1.340E-03 1.194E-03

160.00 0.00 0.34991 1.1979E-03 3.7346E-04 4.191E-04 1.067E-03 -5.384E-10 2.183E-10 -9.111E-04 8.118E-04

170.00 0.00 0.08337 8.4419E-04 6.2705E-05 7.038E-05 7.522E-04 -3.056E-10 -1.455E-10 -4.608E-04 4.105E-04

180.00 0.00 0.04916 7.3574E-04 -3.2226E-05 -3.617E-05 6.555E-04 -2.910E-11 6.912E-11 1.673E-07 -1.491E-07

190.00 0.00 0.12656 8.8517E-04 9.9820E-05 1.120E-04 7.887E-04 -1.164E-10 -4.366E-11 4.610E-04 -4.108E-04

200.00 0.00 0.39033 1.2751E-03 4.4345E-04 4.977E-04 1.136E-03 -4.075E-10 -3.638E-10 9.111E-04 -8.118E-04

210.00 0.00 0.57830 1.8599E-03 9.5834E-04 1.076E-03 1.657E-03 8.877E-10 8.731E-11 1.339E-03 -1.193E-03

220.00 0.00 0.69135 2.5707E-03 1.5835E-03 1.777E-03 2.290E-03 7.567E-10 -2.328E-10 1.735E-03 -1.545E-03

230.00 0.00 0.75801 3.3226E-03 2.2441E-03 2.519E-03 2.960E-03 5.239E-10 3.783E-10 2.084E-03 -1.857E-03

240.00 0.00 0.79742 4.0251E-03 2.8599E-03 3.210E-03 3.586E-03 1.062E-09 -8.149E-10 2.376E-03 -2.117E-03

250.00 0.00 0.81999 4.5926E-03 3.3554E-03 3.766E-03 4.092E-03 4.584E-10 -2.328E-10 2.599E-03 -2.316E-03

260.00 0.00 0.83104 4.9555E-03 3.6694E-03 4.118E-03 4.415E-03 8.949E-10 2.037E-09 2.743E-03 -2.444E-03

270.00 0.00 0.83303 5.0696E-03 3.7629E-03 4.223E-03 4.517E-03 5.020E-10 1.339E-09 2.802E-03 -2.496E-03

280.00 0.00 0.82650 4.9219E-03 3.6246E-03 4.068E-03 4.385E-03 1.019E-09 5.821E-11 2.771E-03 -2.469E-03

290.00 0.00 0.81035 4.5320E-03 3.2722E-03 3.672E-03 4.038E-03 6.512E-10 9.895E-10 2.650E-03 -2.361E-03

300.00 0.00 0.78145 3.9496E-03 2.7500E-03 3.086E-03 3.519E-03 8.004E-10 8.731E-10 2.445E-03 -2.178E-03

310.00 0.00 0.73355 3.2472E-03 2.1223E-03 2.382E-03 2.893E-03 7.421E-10 -6.403E-10 2.162E-03 -1.926E-03

320.00 0.00 0.65506 2.5107E-03 1.4654E-03 1.645E-03 2.237E-03 5.966E-10 4.948E-10 1.812E-03 -1.615E-03

330.00 0.00 0.52635 1.8286E-03 8.5757E-04 9.625E-04 1.629E-03 3.783E-10 -4.657E-10 1.408E-03 -1.254E-03

340.00 0.00 0.32422 1.2812E-03 3.7012E-04 4.154E-04 1.142E-03 -4.366E-11 -1.164E-10 9.615E-04 -8.567E-04

350.00 0.00 0.07151 9.3236E-04 5.9410E-05 6.668E-05 8.307E-04 1.601E-10 -4.366E-11 4.878E-04 -4.346E-04

360.00 0.00 0.05336 8.2200E-04 -3.9079E-05 -4.386E-05 7.324E-04 3.201E-10 -7.822E-11 2.201E-07 -1.961E-07

Forum category: DDSCAT / General discussion

Forum thread: Longitudinal Polarization ]]>

FROM_FILE allows the target to be composed of more than one material — you simply need to specify the composition at each occupied lattice site.

The UserGuide has instructions for the format of target option FROM_FILE. The shape.dat file is a simple ascii file. In examples_exp/FROM_FILE you will find an example.

If the target material is anisotropic, then you can use target option ANIFRMFIL. The shape.dat file is again a plain ascii file, but now becomes more complicated, because at each lattice site you must specify the "composition" corresponding to each of the three principal

axes of the dielectric tensor, and you must specify the orientation of these three principal axes in the Target Frame (because the optical axes of the local material may not coincide with the x,y,z axes of the Target Frame). The UserGuide describes the formatting of this (plain ascii) file.

Forum category: DDSCAT / General discussion

Forum thread: Multilayered Ellipsoid ]]>

I have designed the .stl file for the multilayered shape.

Now, I need to convert it to shape format.

If you kindly introduce me to the format, it will be very much helpful for me to write a code to convert them directly.

Thanks and regards,

Hirak

Forum category: DDSCAT / General discussion

Forum thread: Multilayered Ellipsoid ]]>

If you want a cluster of spheres, all of the same composition, it is easiest to simply use the SPHERES_N target option. You simply need a file specifying the position of the center of each sphere, and its radius (in arbitrary units). The spheres can be overlapping if desired. See the DDSCAT UserGuide for details, and the example provided in examples_exp/SPHERES_N

If you want samples of random aggregates produced by ballistic agglomeration of equal-sized spheres, see the target files available for clusters of 8, 16, 32,64, 128, 256, … spheres at

http://www.astro.princeton.edu/~draine/agglom.html

Examples are given for the standard ballistic agglomeration, and two variants (BAM1 and BAM2) that give higher density aggregates, as described by Shen, Draine & Johnson (2008: Astrophys. J., 689, 260). However, you will need to modify these files for compatibility with DDSCAT:

- delete the first line in the file
- delete the numbers in the column labeled "j"
- change all the numbers in the column labeled "2*a(j)" from 1 to 0.5

If you want a cluster of spheres of various different materials, see target option SPH_ANI_N

The value of the interdipole separation "d" is determined automatically by DDSCAT after you specify the value of AEFF = radius of equal volume sphere (in physical units, e.g., microns) and (if you are using target option SPHERES_N) the parameter SHPAR1 setting the target extent in the x direction, in units of d.

DDSCAT will report the derived value of d in physical units.

Forum category: DDSCAT / General discussion

Forum thread: How to fix lattice spacing 'd' value? ]]>

> FATAL ERROR IN PROCEDURE: ZBCG2WP

> ITERN>ITERMX

> EXECUTION ABORTED

Your ddscat.par file includes the line

100 = MXITER

ddscat reached IT=100 iterations but hadn't quite reached the specified error tolernace of 1.e-5, so it terminated the calculation. If you increase the value of MXITER (to, e.g., 1000) I think that you will find that ddscat will run successfully (on my laptop, IT=133 iterations were required for convergence to ferr < 1.e-5).

Forum category: DDSCAT / General discussion

Forum thread: Gold Nanorod Extinction Spectra Simulation ]]>

To do this I put the ddscat program, and ddscat.par file in a new directory. When I run the program it generates the mtable, qtable, qtable2 and target.out files, but not any .avg, .fml or .sca files. The qtable extinction data is empty. When executing, the program appears to make it through the 100 iterations, but then closes out after. The problem seems to be related to the aeff and/or the shape parameters. When I make the aeff too small or the shape parameters too large, then I get the problem as I described. I have been trying to keep the shape parameters large enough to have ~10000 dipoles. But if I set the aeff to match my experimental samples, then the program doesn't generate extinction data (it does seem to work for much larger aeff sizes).

Below is an example of a .par file that I have been using for a gold rod with dimensions L=37 nm (including end caps) and d=7 nm. Therefore the aeff for this geometry is 0.0068 microns. I tried to make the shape parameters a multiple of 2 (60 x 14), to get over 10000 dipoles.

I have tried this on the Windows precompiled version, as well as on a Linux system with the latest version. I would be tremendously grateful if you could give me any insight on what I might be doing wrong.

' ========== Parameter file for v7.3 ==================='

' Preliminaries '

'NOTORQ' = CMDTRQ*6 (DOTORQ, NOTORQ) — either do or skip torque calculations

'PBCGS2' = CMDSOL*6 (PBCGS2, PBCGST, GPBICG, QMRCCG, PETRKP) — CCG method

'GPFAFT' = CMETHD*6 (GPFAFT, FFTMKL) — FFT method

'GKDLDR' = CALPHA*6 (GKDLDR, LATTDR, FLTRCD) — DDA method

'NOTBIN' = CBINFLAG (NOTBIN, ORIBIN, ALLBIN) — binary output?

' Initial Memory Allocation '

100 100 100 = dimensioning allowance for target generation

' Target Geometry and Composition '

'CYLNDRCAP' = CSHAPE*9 shape directive

60 14 = shape parameters 1 - 2

1 = NCOMP = number of dielectric materials

'../diel/Au_evap' = file with refractive index 1

' Additional Nearfield calculation? '

0 = NRFLD (=0 to skip nearfield calc., =1 to calculate nearfield E)

0.0 0.0 0.0 0.0 0.0 0.0 (fract. extens. of calc. vol. in -x,+x,-y,+y,-z,+z)

' Error Tolerance '

1.00e-5 = TOL = MAX ALLOWED (NORM OF |G>=AC|E>-ACA|X>)/(NORM OF AC|E>)

' Maximum number of iterations '

100 = MXITER

' Integration limiter for PBC calculations '

1.00e-2 = GAMMA (1e-2 is normal, 3e-3 for greater accuracy)

' Angular resolution for calculation of <cos>, etc. '

0.5 = ETASCA (number of angles is proportional to [(3+x)/ETASCA]^2 )

' Wavelengths (micron) '

0.650 0.650 1 'LIN' = wavelengths (1st,last,howmany,how=LIN,INV,LOG,TAB)

' Refractive index of ambient medium '

1.333 = NAMBIENT

' Effective Radii (micron) '

0.0068 0.0068 1 'LIN' = eff. radii (1st,last,howmany,how=LIN,INV,LOG,TAB)

' Define Incident Polarizations '

(0,0) (1.,0.) (0.,0.) = Polarization state e01 (k along x axis)

1 = IORTH (=1 to do only pol. state e01; =2 to also do orth. pol. state)

' Specify which output files to write '

0 = IWRKSC (=0 to suppress, =1 to write ".sca" file for each target orient.

' Specify Target Rotations '

0. 0. 1 = BETAMI, BETAMX, NBETA (beta=rotation around a1)

0. 0. 1 = THETMI, THETMX, NTHETA (theta=angle between a1 and k)

0. 0. 1 = PHIMIN, PHIMAX, NPHI (phi=rotation angle of a1 around k)

' Specify first IWAV, IRAD, IORI (normally 0 0 0) '

0 0 0 = first IWAV, first IRAD, first IORI (0 0 0 to begin fresh)

' Select Elements of S_ij Matrix to Print '

9 = NSMELTS = number of elements of S_ij to print (not more than 9)

11 12 21 22 31 33 44 34 43 = indices ij of elements to print

' Specify Scattered Directions '

'LFRAME' = CMDFRM (LFRAME, TFRAME for Lab Frame or Target Frame)

1 = NPLANES = number of scattering planes

0. 0. 180. 1 = phi, theta_min, theta_max (deg) for plane A

Forum category: DDSCAT / General discussion

Forum thread: Gold Nanorod Extinction Spectra Simulation ]]>

Forum category: DDSCAT / General discussion

Forum thread: How to fix lattice spacing 'd' value? ]]>

Forum category: DDSCAT / General discussion

Forum thread: target size ]]>

Forum category: DDSCAT / General discussion

Forum thread: Running ddscat with MPI ]]>